Grasp Analysis as Linear Matrix Inequality Problems

نویسندگان

  • Li Han
  • Jeffrey C. Trinkle
  • Zexiang Li
چکیده

Three important problems in the study of grasping and manipulation by multi ngered robotic hands are: (a) Given a grasp characterized by a set of contact points and the associated contact models, determine if the grasp has force closure; (b) If the grasp does not have force closure, determine if the ngers are able to apply a speci ed resultant wrench on the object; and (c) Compute \optimal" contact forces if the answer to problem (b) is a rmative. In this paper, based on an early result by Buss, Hashimoto and Moore, which transforms the nonlinear friction cone constraints into positive de niteness of certain symmetric matrices, we further cast the friction cone constraints into linear matrix inequalities (LMIs) and formulate all three of the problems stated above as a set of convex optimization problems involving LMIs. The latter problems have been extensively studied in optimization and control community and highly e cient algorithms with polynomial time complexity are now available for their solutions. We perform simulation studies to show the simplicity and e ciency of the LMI formulation to the three problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control

In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...

متن کامل

Sampling method for semidefinite programmes with non-negative Popov function constraints

An important class of optimization problems in control and signal processing involves the constraint that a Popov function is nonnegative on the unit circle or the imaginary axis. Such a constraint is convex in the coefficients of the Popov function. It can be converted to a finitedimensional linear matrix inequality via the Kalman-Yakubovich-Popov lemma. However, the linear matrix inequality r...

متن کامل

Sampling method for semidefinite programs with nonnegative Popov function constraints∗

An important class of optimization problems in control and signal processing involves the constraint that a Popov function is nonnegative on the unit circle or the imaginary axis. Such a constraint is convex in the coefficients of the Popov function. It can be converted to a finitedimensional linear matrix inequality via the Kalman-Yakubovich-Popov lemma. However, the linear matrix inequality r...

متن کامل

Solving Path Following Problem for Car-Like Robot in the Presence of Sliding Effect via LMI Formulation

One of the main problems of car-like robot is robust path following in the presence of sliding effect. To tackle this problem, a robust mix H2/H∞ static state feedback control method is selected. This method is the well-known linear robust controller which is robust against external disturbance as well as model uncertainty. In this paper, the path following problem is formulated as linear matri...

متن کامل

Haar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems

‎In this paper‎, ‎Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems‎. ‎Firstly‎, ‎using necessary conditions for optimality‎, ‎the problem is changed into a two-boundary value problem (TBVP)‎. ‎Next‎, ‎Haar wavelets are applied for converting the TBVP‎, ‎as a system of differential equations‎, ‎in to a system of matrix algebraic equations‎...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999